
J. Fluid Mech. (1995), 001. 291, pp. 21S291 
Copyright @ 1995 Cambridge University Press 

275 

Refined similarity hypotheses for passive scalars 
mixed by turbulence 

By G. STOLOVITZKY, P. KAILASNATH 
AND K. R. SREENIVASAN 

Mason Laboratory, Yale Univeristy, New Haven, CT 06520-8286, USA 

(Received 17 March 1994 and in revised form 6 April 1995) 

In analogy with Kolmogorov’s refined similarity hypotheses for the velocity field, 
two hypotheses are stated for passive scalar fields mixed by high-Reynolds-number 
turbulence. A ‘refined’ Yaglom equation is derived under the new assumption of local 
isotropy in pure ensembles, which is stronger than the usual assumption of local 
isotropy but weaker than the isotropy of the large scale. The new theoretical result is 
shown to be consistent with the hypotheses of refined similarity for passive scalars. 
These hypotheses are approximately verified by experimental data on temperature 
fluctuations obtained (in air) at moderate Reynolds numbers in the wake of a heated 
cylinder. The fact that the refined similarity hypotheses are stated for high Reynolds 
(and Pkclet) numbers, but verified at moderate Reynolds (and Pkclet) numbers sug- 
gests that these hypotheses are not sufficiently sensitive tests of universality. It is 
conjectured that possible departures from universality are hidden by the process of 
taking conditional expectations. 

1. Introduction 
A substantial part of our understanding of high-Reynolds-number turbulence 

comes from the scaling theory proposed by Kolmogorov (19414 relating the statistics 
of velocity increments to the average dissipation rate of kinetic energy. The necessity 
to account for strong fluctuations in energy dissipation rate (Batchelor & Townsend 
1948; Landau & Lifshitz 1959), not taken into account in Kolmogorov (19414, led 
Obukhov (1962) and Kolmogorov (1962) to reformulate the original theory. The 
refinements, stated succinctly by Kolmogorov (1962), have become known as refined 
similarity hypotheses. Even though some consequences of Kolmogorov’s refined theory 
have been indirectly verified experimentally in the past (e.g. Anselmet et al. 1984; 
Meneveau & Sreenivasan 1991), it is only recently that the basic tenets underlying 
the refined hypotheses have been verified in some detail (Stolovitzky, Kailasnath & 
Sreenivasan 1992; Praskovsky 1992; Thoroddsen & Van Atta 1 9 9 2 ~ ~  Chen et al. 1993; 
Hosokawa 1993). A theoretical approach to this problem was taken by Stolovitzky & 
Sreenivasan (1994). 

The scaling theory of fluctuations of a passive scalar field has been developed 
by Obukhov (1949), Yaglom (1949), Corrsin (1951), Batchelor (1959) and Batchelor, 
Howells & Townsend (1959), along lines that are similar in various degrees to that 
for the velocity field. Hints about the modifications needed to account for strong 
fluctuations in the local rates of dissipation for both the velocity and scalar fields 
can be found dispersed in Monin & Yaglom (1975), and some consequences of 
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these modifications have been discussed in various forms, for example, by Van 
Atta (1971), Antonia & Van Atta (1975), Meneveau et al. (1990) and Sreenivasan 
(1991). Hosakawa (1994) proposed an extension of the refined hypothesis for the 
passive scalar and used this extension to compute the probability density function 
of temperature increments and gradients. His results compared reasonably well with 
the temperature increment data of Antonia et al. (1984) and with the temperature 
gradient data of Thoroddsen & Van Atta (1992b). This work therefore constitutes, 
albeit indirectly, a confirmation of the refined similarity hypotheses for the passive 
scalar. However, the refined hypotheses for the passive scalar have not yet been 
stated in their most general form, and have not been subjected to direct experimental 
scrutiny. In this paper we state them in a general way and present some experimental 
support; we further obtain specific results from the dynamical equation governing the 
passive scalar, and show that predictions of the hypotheses are consistent with them. 

After providing the needed background and a description of notation in $2, we 
state in $3 Kolmogorov’s refined similarity hypotheses for the velocity field (henceforth 
denoted by KRSH) as well as the analogous refined similarity hypotheses for the 
passive scalar field (henceforth denoted by RSHP). The principal theoretical result 
deduced from the evolution equation for the passive scalar is described in $4, and 
the sense in which this result supports RSHP is pointed out. Experimental details 
and results are described in §§5 and 6 respectively. The paper concludes with a few 
summary remarks in $7. 

2. Background and notation 
Let 8(x , t )  denote a scalar field 8 at position x and at time t. Imagine that this 

scalar is mixed by the velocity field u(x,t)  of the fluid in turbulent motion. Let v 
and x denote, respectively, the kinematic viscosity and kinematic diffusivity of the 
fluid. We shall think of 0 as the temperature. Needless to say, other scalars such as 
the concentration of a dye are amenable to the same analysis. The Prandtl number 
P r  = v / x .  Two quantities that play main roles in this study are the energy dissipation 
rate per unit mass 

and the scalar dissipation rate per unit mass 

Under the assumption of local isotropy (to which we shall return shortly), it is well- 
known that (€) = 15v( ( ~ U ~ / ~ X I ) ~ )  and ( N )  = 3x(  (df3/dx1)2), where (.. . )  denotes an 
ensemble average. Relations (1) and (2) have been used extensively in the literature; 
also used extensively (sometimes under questionable circumstances) as surrogates of 
the local rates of energy and temperature dissipation are d = 15v (duI/ax1)* and 
N’ = 3% (i?8/dx1)2. Clearly, if local isotropy prevails, (el) = (6) and (N’)  = ( N ) .  
Because d and N’ are both highly intermittent quantities (Batchelor & Townsend 
1948; Sreenivasan & Meneveau 1988; Meneveau et al. 1990) the small structure of 
the turbulence field is better related to local averages of the two dissipation rates 
rather than to their global averages. Denote by N,(xo,t), the local average of the 
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scalar dissipation rate over a region of linear size r around the location XO, 

where B(xo,r/2) is a sphere of radius r/2 centred at XO. Alternatively, the local 
average in the case of the one-dimensional surrogate of N will be 

Equivalent definitions for the local averages of the energy dissipation rate can be 
obtained by replacing N by e in equations (2.3) and (2.4). Obukhov (1962) argued 
that the small structure of turbulence is related to averages performed over the 
pure ensemble: by the pure ensemble at a fixed r and XO, Obukhov meant the set 
of realizations of turbulent velocity and scalar fields for which the dissipation of 
temperature and energy take given values N,(xo, t )  = n and F,(XO, t )  = e. 

To describe features of turbulent flows that have any generality to them, we must 
restrict attention to scales r which are much smaller than a typical external scale L 
- this being the smaller of the integral scales for the velocity and scalar fields. The 
local structure of the flow is best described by quantities such as the instantaneous 
difference of the temperature and velocity between two points in space x and x + r; 
that is, in terms of temperature difference A@, r) = O(x + r) - O(x) and the velocity 
difference Au(x,r) = u(x + r) - u(x). For notational simplicity we shall at times write 
Are instead of AO(x,r) and A,u instead of Au(x,r). We shall denote by Arur the scalar 
field produced by projecting Au(x, r) onto the direction of r, i.e., A,% = r/r*Au(x, r). 
With this as the background, the refined similarity hypotheses can now be stated. 

3. The refined similarity hypotheses 
3.1. Kolmogorov's rejined similarity hypotheses for the velocity jield ( K R S H )  

Even though the KRSH are not the main point of this paper, it will later prove useful 
to state them here. In the form used here, KRSH for fully developed turbulence can 
be stated as follows: 

The first hypothesis: For a range of scales r such that r << L, the conditional 
probability density function (p.d.f.) of the stochastic variable 

(where x and x + r are poles of the sphere B(xo,r/2)) given that e r ( X 0 )  = er, is 
independent of x and xo and depends only on the local Reynolds number Re, = 
r ( re,) ll3 /v . 

The second hypothesis: For Re, >> 1 (or, equivalently, for r >> q,, where qr = 
(v3/er)lI4 is the local Kolmogorov thickness), the conditional p.d.f. of V for a given 
e, becomes independent of Re,, and is therefore universal. 

There is also a third hypothesis concerning the lognormality of E ,  about which we 
shall have nothing to say in this paper. 

It turns out that these hypotheses, when stated in terms of the one-dimensional 
surrogate e', have to be modified to allow for an additional r-dependence of the p.d.f. 
of V .  The reason is the following. Consider a conditional ensemble of realizations 
of turbulence with a fixed <(x0) = e:. If the turbulence is assumed locally isotropic, 
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the direction r / r  of the one-dimensional cut along which e: is computed is irrelevant. 
This ensemble has a non-empty intersection with the ensemble of fixed e&) = 6, for 
6 between a minimum and maximum value (which may well be zero and infinity). In 
the ensemble of fixed e:, the statistics of V' = Au,/(r~;) ' /~  can be computed as an 
appropriate average of the statistics of V = Aur/(rer)ll3, weighted by the r-dependent 
relative contribution of e, to the ensemble of fixed e;?. Therefore, the statistics of 
V' will inherit its local Reynolds number dependence (now in terms of 4 )  from the 
statistics of V ,  and its r-dependence from the conditional statistics of e, given e:. 

In Stolovitzky & Sreenivasan (1994) and in Stolovitzky (1994) it was indeed shown 
that the €:-based local Reynolds number Re: does not uniquely determine the condi- 
tional p.d.f. of V', and that an additional dependence on r / q  (where q = ( v ~ / ( E ) ) ' / ~  is 
the Kolmogorov thickness) enters the picture. Therefore, the appropriate statements 
of the refined similarity hypotheses for the velocity field when expressed in terms of 
e: are the following: 

Thefirst hypothesis (in terms of 6; ) :  For a range of scales r such that r << L, the 
p.d.f. of the stochastic variable 

conditioned on 4 is independent of x and depends only on r / q  and the local Reynolds 
number Re: = r ( r ~ : ' ) ' / ~ / v .  

The second hypothesis (in terms of e;):  For r >> q and Re, >> 1, the conditional 
p.d.f. of V' given e: becomes independent of r and Re:, and is therefore universal. 

One of the implications of the second hypothesis is that a correlation exists between 
JAu,) and e,. As an experimental fact, this correlation depends on precisely which 
component of E ,  is used as its surrogate. Thoroddsen (1995) pointed out that the 
use of the surrogate e* - ( d ~ / d x ) ~ ,  where w is velocity component transverse to the 
x-direction, reduces the correlation from that obtained using e:. His work stresses that 
the choice of e: in the previous work was somewhat fortuitious, besides having been 
simply convenient. Thoroddsen's point has been confirmed by Chen et al. (1995) in 
their numerical simulations and also in our own hgh-Reynolds-number experiments 
in the atmospheric surface layer (to be published). It should be stressed, however, 
that a demonstrable correlation between 1Au,1 and e, persists even if the full definition 
of the dissipation, or any of its various other surrogates, is used (Chen et al. 1995); 
in particular, this correlation remains at a non-trivial level in high-Reynolds-number 
atmospheric turbulence even when Thoroddsen's surrogate is used. 

3.2. The refined similarity hypotheses for passive scalars (RSHP)  
The analogous hypotheses for a passive scalar mixed by fully developed turbulence 
can be stated now as follows: 

Thefirst hypothesis: For a range of r such that r << L, the conditional p.d.f. of the 
stochastic variable 

(re,) 'la 
Ve = AO(x,r)- 

( r  N,)' (3.3) 

t For fixed r, this relative contribution is ruled by the conditional probability P ( ~ , l < ; r )  of 
given 4. That this conditional probability depends on r can be seen by studying its behaviour for 
large and small r .  For r -+ L the probability that E, be different from €1 tends to zero, while for 
very small r the same probability is different from zero. In effect, for very small r,  one has that 
E ,  = 4 + X, where X = i v  x(aui/ax, + duj/dxi)'  - g<, where the sum is over all the indices 
i = 1,2,3 and j = 1,2,3 excluding the case of i and j being simultaneously 1. The probability that 
€1 differs from E, (i.e. the probability that X be different from zero) is clearly positive. 
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(where x and x + r are poles of the sphere B ( x o , r / 2 ) )  for given +o) = e, and 
N,(XO) = N,, is independent of x and XO, and depends only on the local Reynolds 
number Re, = r(rer)1/3/v and the local PCclet number Per = Re,Pr. 

The second hypothesis: For Re, >> 1 and Per >> 1 (or what is the same, for 
r >> q - ( ~ , ) ,  where qmax(e,) = rna~((v~/e~)'/~,(~~/e~)~/~)}, the conditional p.d.f of Ve 
for given E ,  and N,. becomes independent of Re, and Per, and is therefore universal. 

As already remarked, these hypotheses for the special case of unity Prandtl number 
have been advanced by Hosakawa (1994), who assumed that Ve was independent of 
r, E,, and N ,  as a first approximation. 

For reasons already discussed in the context of KRSH, it is reasonable to postulate 
an additional r-dependence of the refined similarity hypotheses for passive scalars 
when stated in terms of the one-dimensional surrogates of the dissipation of the 
energy and the scalar. 

The first hypothesis (in terms of N: and <): For a range of r such that r << L, the 
p.d.f. of the stochastic variable 

conditioned on < and Ni is independent of x and depends only on r /qmx( (e ) )  (where 
qmax((e)) = max{(~~/(e)) ' /~ ,  ( v ~ / ( E ) ) ' / ~ } ,  the local Reynolds number Re: = r(re;)'I3/v 
and the local Peclet number Pd,  = Re',Pr. 

The second hypothesis (in terms of Ni and EL): For r >> qmax((e)), Re: >> 1 and 
Pe; >> 1, the conditional p.d.f. of Vi given e: and N: becomes independent of r ,  Re: 
and Pe:, and is therefore universal. 

3.3. A remark on the r-dependence in the rejined hypotheses 

The standard practice in experiments, necessitated by convenience, is to use one 
term to represent the total dissipation. This calls for the introduction of some 
modifications in the context of KRSH. This suggests that experimental tests of 
the hypotheses (in which e' is usually considered) can be usefully complemented 
by the direct numerical simulations (DNS) of turbulence, in which both d and 
the full energy dissipation rate E can be obtained. Such studies have been made 
at moderate Reynolds numbers by Chen et al. (1993) and Wang et al. (1994). 
These latter authors have shown that the r-dependence introduced by considering 
KRSH in terms of ei tends to disappear when the full e, is considered as the 
conditioning parameter. One might expect that the effect of using N' instead of N 
in RSHP should be more benign than the equivalent of considering d instead of 
E in KRSH: as argued in Sreenivasan, Antonia & Danh (1977), the approximation 
of using the one-dimensional surrogate is in general better for the scalar dissipation 
rate. 

Our goal in the remainder of this paper is to provide support to RSHP. In the 
following section we will show that RSHP are consistent with results derived directly 
from the equations of motion under some reasonable assumptions. In $6, we will test 
RSHP as stated in terms of the one-dimensional surrogates d and N'. It would be 
highly desirable that similar tests be performed using DNS of passive scalars mixed 
by turbulence, considering the full expressions for both dissipation rates. 
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4. Theoretical analysis 
4.1. The statement of the principal result 

Under the assumptions of local isotropy in each of the conditional ensembles of fixed 
fR and NR, we wish to prove that Yaglom’s (1949) equation, 
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can be written in terms of conditional expectations in the pure ensembles. In 
equation (4.1), ( . . . ) is the ensemble average in G, where G is a global domain of size 
equal to the integral scale L in which isotropy obtains. In the pure ensemble of fixed 
CR = e and N R  = n, the equivalent equation is 

(4.2) 
a 
ar (Arur(Ar0)’le, n;  R )  = - i n  r + 2x-((Ar8)’(e, n; R). 

In this equation, the ball of radius R/2 defining the pure ensemble contains the points 
x and x + r across which the increments Arur and Are are taken. 

Equation (4.1) was originally derived by Yaglom (1949) under the assumption 
that the velocity and temperature fields were jointly isotropic. In their derivation 
of Kolmogorov’s (1941b) structure equation under the assumption of local isotropy, 
Monin 8z Yaglom (1975) pointed out that the same derivation could be used to obtain 
Yaglom’s equation, without requiring the isotropy of the large scale. Later in this 
subsection we will derive equation (4.2) under the assumption of local isotropy in the 
pure ensembles, following the spirit of Monin & Yaglom’s derivation of Kolmogorov’s 
structure equation. Thus, equation (4.2) holds rigorously if the assumption of local 
isotropy in the pure ensembles were applicable. This assumption is more restrictive 
than the usual assumption of local isotropy within a global domain G. In effect, our 
assumption implies that the locally isotropic ensemble of realizations of turbulence 
in G has subsets (the pure ensembles), which are locally isotropic in any of the 
spatial subregions given by the balls B(x,  R/2). A direct assessment of the validity 
of this assumption for turbulence? will have to await further work. If there were 
departures from local isotropy in pure ensembles, equation (4.2) would stand up 
only as an approximation. In the remainder of this section we shall assume that the 
hypothesis of local isotropy in the pure ensembles holds strictly and concentrate on 
its consequences. 

The optimum way of using the information that the local averages of dissipation of 
energy and scalar in the domain B(x0, R / 2 )  are e and n when computing the moments 
of Arur and Are, is to set I = Irl = R. Physically this means that the points x + r 
and x (across which the increment Arur and Are are taken) are poles of the sphere 
B(x0, R/2). It can be proved easily that for r = R, the second term on the right-hand 

The one-dimensional version of this assumption, namely local homogeneity in the pure en- 
sembles, can be shown to hold true for a variety of one-dimensional stochastic processes such as 
classical Brownian motion (which is a process with independent increments) as well as for fractional 
Brownian motion (which is a process with correlated increments) when the pure ensembles are 
defined via a quantity similar to the one-dimensional surrogate of the energy dissipation. The 
validity of this assumption, however, depends on both the type of the stochastic process and the 
conditioning defining the pure ensemble. For example, if f is a homogeneous, twice-differentiable 
Gaussian process, the process given by dZf/dx2 is not locally homogeneous in the pure ensem- 
bles for the scale size r -+ 0 constrained by a fixed value o f f  (R. H. Kraichnan 1994, personal 
communication). 
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side of equation (4.2) can be written in the form 

In interpreting equation (4.3), it is important to note that ((ArO)2(e,n; R )  is a function 
of r ,  e, n and R ,  while ((ARO)21e,n;R) is a function of e, n and R only. In the 
former expression, r can take any value between 0 and R, and the pure ensemble over 
which the average is taken, Q = e and NR = n, is fixed. In the latter expression, the 
increments are taken across their saturated value (the diameter of the ball defining the 
ensemble), and in changing R keeping e and n fixed, we are changing the ensemble. In 
the second term on the right-hand side of equation (4.3), we are taking a derivative 
with respect to the diameter of the sphere that determines the pure ensemble, 
keeping fixed the two points across which the increment ARO is taken, and evaluating 
the result in < = R.  

Using equation (4.3), we can rewrite equation (4.2) at r = R as 
a a 

(Arur(ArO)21e,n;r) = -$nr + 2 ~ - ( ( A , O ) ~ l e , n ; r )  - 2 ~ - ( ( A , O ) ~ ( e , n ;  l ) l e = r -  (4.4) ar a t  
When the local Reynolds and PCclet numbers are much larger than unity, the right- 
hand side of equation (4.4) is dominated by the first term. In effect, noting from 
the second KRSH that for Re, >> 1 ,  ArUr - and that (Arur(ArO)21e,n;r) - 
( r ~ ) ’ / ~ ( ( A ~ O ) ~ l e ,  n ;  r ) ,  it follows that 

Therefore, for Re, >> 1 and Per >> 1, we have 

(A,u,(ArO)2(e,n;r >= -4.1.. (4.5) 

Another interesting result can be obtained from equation (4.4) in the limit of r 
qmin where qmin = m i n ( ( ~ ~ / e ) ’ / ~ ,  ( ~ ~ / e ) ’ / ~ } .  In such a case, the left-hand side of 
equation (4.4) can be neglected (for it is of third order in r which is assumed 
very small), and the last term on the right-hand side is zero because for < > r ,  
((ArO)21e, n ;  l )  = ((3*VO)2r2(e, n ; r )  = n/3%r2 and therefore (d /ag) ( (A,0)2(e ,  n; c )  = 0. It 
follows that the second term on the right-hand side of equation (4.4) has to cancel 
the first term. Thus 

((A,0)21e, n ;  r )  = -r2. 

The averages over e and n of equations (4.5) and (4.6) yield the known results (Yaglom 
1949) 

and 

(4.6) 
n 

3% 

(Aru,(A,0)2) = - $ ( N ) r  (4.7) 

((Are)’) = -r2 ( N )  
3% 

( 4 4  

for r sufficiently large and small respectively. 
It is interesting to discuss an important difference between the similarly looking 

equations (4.5) and (4.7). Physically, Yaglom’s relation (A,u,(A,0)2) = -f ( N ) r  indi- 
cates that the flux of scalar fluctuations at scale r towards the small scales is 
controlled by the global mean of scalar dissipation rate (N). This is the expression 
of a global balance of scalar fluctuations: the size of the fluctuations transferred 
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(towards smaller scales) across any given inertial-convective scale is only dissipated 
at the smallest scales. The relation (Arur(ArO)21e,n;r) = -$nr expresses the same 
kind of balance of scalar fluctuations, but in a detailed fashion. By the latter, we 
mean that the mean flux of scalar fluctuations in the pure ensemble at fixed N ,  = n 
is controlled not by the global average (N), but by the local average N,. 

Given that detailed balance implies global balance, we can derive equations (4.5) 
and (4.6) from equations (4.7) and (4.8). However, as global balance does not imply 
detailed balance, the validity of equations (4.7) and (4.8) does not, in principle, 
imply the validity of equations (4.5) and (4.6). These last two relations follow from 
equation (4.2), which in turn is warranted if the hypothesis of local isotropy in the 
pure ensembles is postulated. This assumption is stronger than the assumption of 
local isotropy in the global domain (as was pointed out before) and weaker than the 
assumption of global isotropy, in that it does not demand the isotropy of the large 
scales of motion. Therefore, and for the sake of completeness, it seems appropriate 
to derive equation (4.2) without using the assumption of global isotropy used in the 
classical derivation of Yaglom’s equation, but with the assumption of local isotropy 
in pure ensembles. 

4.2. The derivation of equation (4.2) 
Let r’ and r” be two points within the domain G where the turbulence is locally 
isotropic. Denote d = u(r’,t), d’ = u(r”,t), 8‘ = O(rf,t) and 8” = O(r”,t). To derive 
equation (4.2) without any special assumption about the isotropy of the large-scale 
structure of the flow, we must transform the advection-diffusion equation into an 
equation that contains only velocity and temperature differences and their derivatives. 
We start by writing the advection4iffusion equation at the point r ” :  

Next, we add and subtract from the left-hand side of equation (4.9) the term u;aO”/ar;, 
and obtain 

(4.10) 

where we have used the fact that aO’/ar; = 0. Subtracting equation (4.9) evaluated 
at r’ from equation (4.10) yields 

a 
( axj  >,, a 

- [el‘ - el] + U ~ ( X  + r’, t ) -  [qx + r”, t )  - O(x + r’, t)] 
at 

where we have utilized the identity that a20’/ar’!arl,‘ = a20”/arjarj = 0. Denote by 

by 8” - O‘, and denoting Are = AO(r’, r ,  t )  = 8“ - 8’, we find 
r = r” - r’ the vector separating the two points r ’  / and r’. Multiplying equation (4.11) 
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where we have used that 

At this point we take averages in the pure ensemble. We choose any point XO, 

and any diameter R > Irl = r such that the points r” and r’ are contained in 
the ball B(xo,R/2) which in turn is contained in G, and proceed to take averages 
in the ensemble of fixed N ~ ( x 0 , t )  = n, where n is any positive number. Under the 
hypothesis that the turbulence in the pure ensemble is stationary, locally homogeneous 
and isotropic, the average of the first term in equation (4.12) vanishes because 
of stationarity and the expectation of the second term vanishes because of local 
homogeneity. Therefore, from equation (4.12) we obtain 

where we have implied that 0 is a locally homogeneous random field. Therefore, 

and 

(4.15) 

Because u(x, t )  and O(x, t )  are locally isotropic random fields, we have 

(Arui(ArO)21n;R) = (Arur(ArO)21n; R )  5 (4.16) 
r 

(recall that Arur = P*A,u), where (A,u,(A,8)21n;R) depends on r only through its 
absolute value r .  Local isotropy also implies that ((ArO)21n;R) is a function of the 
absolute value of r .  Therefore, in d dimensions, we have 

a i a  
- ( A , u ~ ( A , O ) ~ ) ~ ; R )  = -- (rd-’(Arur(A,8)2)n;R)), 
ark rd-1 ar 

and 

-((ArO)21n;R) = 
a 2  

ar,ar, 

(4.17) 

(4.18) 

Further, ( (aA,e/ar;) / (aA,e/ar;) ln;  R) = n. Thus equation (4.13) can be rewritten as 

-- a [rd-l ((Au,(A8)21n;R) - 2x((AO)’ln;R))] = -4n 
rd-l ar 

which can be integrated easily to yield 
4 
d 

(A,u,(ArO)21n;R) - 2 ~ ( ( A , B ) ~ l n ;  R )  = --nr 

(4.19) 

(4.20) 

Note that this derivation would not have changed if we had assumed that the pure 
ensemble was determined not only by NR, but also by e ~ .  In such a case, and for 
d = 3, equation (4.20) yields equation (4.2). 
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4.3. Consistency between RSHP and the equations ( 4 . 5 )  and (4 .6 )  
A sensible theoretical test of RSHP is to show that they are consistent with equa- 
tion (4.5). To do this, let us rewrite the first RSHP as 

(4.21) 

From the second KRSH, namely that Arur = V ( ~ C ~ ) ' / ~ ,  we can write Arur(Ar8)2 = 
(VVi)rNr .  Taking averages in the pure ensemble we obtain 

(Aur(Ae)2/c,,N,;r) = (VVi/er,Nr;r)rNr. (4.22) 

Now using the second RSHP, we find (for Re, >> 1 and Per >> 1) that (VVilcr, Nr; r )  
is independent of E ,  and N,,  and is therefore a universal number. Thus, we have shown 
that the hypotheses are consistent with equation (4.5). Furthermore, this consistency 
also demands that (VVt le , ,N, ;r )  = -:. It is clear that the precise values of the 
different moments of Ve do not follow from the hypotheses. The reason is simply 
that the second refined hypothesis postulates the existence of a universal p.d.f. for Ve, 
but not its functional form. 

In the limit of Re, << 1 and Per << 1, on the other hand, we can use equation (4.6) 
to study the dependences of (V:~E, ,  Nr ; r ) .  It can be easily checked from the definition 
of VO that equation (4.6) yields 

(4.23) 

indicating a dependence on Per only, consistent with the RSHP. 
We now turn to the experimental assessment of RSHP. 

5. Experimental details 
For the experimental verification of the refined hypotheses, one needs to measure 

simultaneously the dissipation rates of energy and scalar variance. Such measurements 
were attempted in the wake of a circular cylinder mounted in a subsonic wind tunnel. 
The cylinder had a diameter of 1.9 cm and a length of 76 cm (spanning the width of the 
wind tunnel), and was heated uniformly by internal heating elements. Measurements 
were made at a streamwise distance of 80 diameters behind the cylinder on the 
wake centreline. The maximum excess temperature at the measuring station was 
about 2.5"C, so that the heating can be considered effectively passive. The velocity 
of the oncoming uniform stream was 9.5 m s-l. The Reynolds number based on 
the cylinder diameter was 12000, and the microscale Reynolds number based on the 
root-mean-square velocity (u' = 40 cm s-l) and the Taylor microscale ( A  = 0.6 cm) 
was 160. The flow is thus only of moderate Reynolds number. The limitations 
imposed by the moderate Reynolds number of the wake flow will be discussed later. 
(Unfortunately, the joint atmospheric velocity/temperature data, obtained about 6 m 
above the ground, had convergence problems and so could not be used.) On the wake 
centreline, the estimated Kolmogorov scale, q,  was 0.023 cm, and the dissipating scale 
for the temperature field, = ( ~ ~ / ( e ) ) ' / ~ ,  was 0.028 cm. 

The measurement probe consisted of a probe support on which were mounted a hot 
wire (5  pm diameter, 0.5 mm long) for measuring the velocity fluctuations and a cold 
wire (0.6 pm diameter, 0.5 mm long) for measuring temperature fluctuations. Several 
detailed tests were conducted on the optimal distance between the two probes: too 
small a distance would result in the interference of the hot wire on the cold wire, but 
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too large a distance would render the assumption of spatial simultaneity invalid. These 
tests, available in the form of two unpublished documents by Kailasnath (1988a, b), 
showed that the optimal separation distance was 1.2 mm for the wake; mounting the 
two wires closer would produce perceptible distortion of the temperature signal. By 
increasing the distance even further and studying the effect on the joint statistics of 
the measured velocity and temperature signals, it was determined that this distance, 
although larger than is ideal, was not unacceptably large. The hot wire had a flat 
frequency response up to 40 kHz, the corresponding number for the cold wire was 
4 kHz. The hot wire was operated on a DANTEC constant-temperature anemometer 
typically at an overheat of 1.3; larger overheat, while desirable for better signal/noise 
ratio, would produce unacceptable cross-talk between the signals from the two wires. 
The signal-to-noise ratio for these operating conditions was estimated to be 55 dB. 
The cold wire was operated on a constant-current anemometer built in-house on the 
basis of a design by Peattie (1987); the operating current of 120 pA produced a 
temperature signal/noise ratio of 40 dB. The signals from the hot and cold wires were 
sampled at a frequency of 8 kHz. Thirty two data files, each consisting of 1.2 x lo5 
data points were obtained. 

From these velocity and temperature time traces, derivatives were obtained by 
digitally differentiating the signals. The time derivatives were in turn treated as space 
derivatives in the direction of the mean motion of the fluid by invoking Taylor’s 
frozen flow hypothesis. Much literature exists on the validity or otherwise of Taylor’s 
hypothesis (see, for example, Antonia, Chambers & Phan-Thien 1980 and the papers 
cited there), but its use is generally accepted as reasonable for small scales (such as 
the derivative quantities) if the turbulence level is small (see, e.g., Monin & Yaglom 
1971). In this instance, the turbulence level (as estimated by the ratio of the measured 
root-mean-square streamwise velocity fluctuation to the mean velocity) was 4.2%, and 
may be considered small enough. 

6. Experimental results 
6.1. The extent of the inertial range 

Since the Reynolds number of the wake is modest, the extent of the inertial range - if 
one exists - should be examined explicitly. This can be done by testing the degree to 
which the well-known relation due to Kolmogorov (1941b), exactly valid in a limiting 
sense in the inertial range, is satisfied by the wake measurements. This relation is 

((Arur)3) = -$(e)r. (6.1) 

For notational convenience we will drop the primes in V;, e’ and N’ in this section 
(including figures). The use of primes will be resumed in $7, where we present our 
conclusions. 

Figure 1 shows a plot of ((Arur)3)/((e)r) versus r / q .  An optimistic guess is that the 
inertial range is about half a decade, roughly as marked in the figure. Note that the 
plateau in figure 1 is somewhat less than the 4/5 required by equation (6.1). This is 
not an unusual feature of several other measurements in the literature (e.g. Anselmet 
et al., figure lo), and could have a variety of causes such as the moderate value of 
the Reynolds number, use of discrete derivatives in the estimation of (e) ,  use of the 
Taylor hypothesis in treating time increments as spatial increments, and, finally, the 
use of e’ instead of e. 
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FIGURE 1. The third-order structure function, normalized with I(€), as a function of the separation 
distance r in units of the Kolmogorov scale q.  The extent of the plateau interpreted roughly as the 
inertial range is marked; this is taken as the range in which the variation of the structure function 
is within about +_5% near the peak region. 
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FIGURE 2. The standard deviation of the stochastic variable V = A ~ 4 ~ / ( r e ~ ) * ’ ~  plotted as a function 
of rer normalized with q ( ~ ) ,  for the atmospheric boundary layer (diamonds, r / q  = 144) and for the 
wake of a cylinder (squares, r / q  = 78). The former is well within the inertial range, and the latter 
marks the upper end of the inertial range. The mean value of V is close to zero in both cases. 

Given the unsatisfactory extent of the inertial range, it was felt desirable to 
ascertain that the quantities computed from the moderate-Reynolds-number data 
indeed correspond meaningfully to the inertial range. We had acquired in a previous 
study (Stolovitzky er al. 1992) large amounts of velocity data in the atmospheric 
surface layer at high Reynolds number (microscale Reynolds number of about 2000), 
and felt that detailed comparisons of the velocity statistics between the wake velocity 
data and the atmospheric oelociry data (which do converge) would throw some light 
on the present issue. Figure 2 shows one such example. It compares the standard 
deviation of the universal variable V plotted against rer / (q(e) ) ;  the data correspond to 
the atmospheric surface layer data (diamonds) for the separation distance r / q  = 144 
which is within the inertial range, as well as to the wake data (squares) at the upper 
end of the presumed inertial range marked in figure 1. The wake data blend reasonably 
well with the atmospheric data, demonstrating the reasonableness of assuming that 
there is an inertial range - albeit a small one - in the wake data. 

Similar tests for the temperature data could not be made because of convergence 
problems of the atmospheric temperature data already mentioned. There is indeed no 
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direct proof that the small structure of the scalar has attained a universal state, but it 
is expected that the data to be presented below will shed some light also on this issue. 
For this reason, as well as for other limitations of the present data as mentioned in 
$5, an independent effort at high Reynolds numbers will be both welcome and timely. 

6.2. Experimental test of RSHP 

To test RSHP, we proceed as follows. For given windows of r,  and N,, we compute 
the normalized histograms of Ve = A,e(re,)'/6/(rNr)1/2. According to the hypotheses, 
we expect that VO will depend on both e, and r for small values of r .  If r is 
large enough (still much smaller than L), so is the local Reynolds number (recalling 
that Re, = r4/3e:/3/v). (Note that because P r  = 0.7 - O(1) for our experimental 
conditions, taking Re, >> 1 also implies Per = Re,Pr >> 1.) For this case, according 
to the second hypothesis, the p.d.f.s are expected to become independent of e, and r .  

Figure 3 shows plots of the p.d.f. of Ve for r / q  = 78 which, according to figure 1, 
corresponds roughly to the upper end of the inertial range. Each of figure 3(a)- 
3(d )  corresponds to different windows of N,,  as indicated; within each, different 
p.d.f.s correspond to different windows of e, specified in the caption. In spite of the 
significant scatter, it appears reasonable to say that PT( Ve Ir,, N ,  ; r) ,  the conditional 
p.d.f. of Ve for given e, and N,, shows a modest collapse onto a unique p.d.f., which is 
Gaussian-like in shape. The existence of such a unique p.d.f. which is independent of 
r,  e, and N, in the inertial range, for which the local Reynolds number is sufficiently 
high, is the substance of RSHP, 

The predictive power of the hypothesis can be tested by analysing experimental 
data further. It would have been ideal to test equation (4.5) directly from the data, 
but the convergence of the third-order moment is poor in the experimental data. 
So we shall test an alternative feature of the refined hypotheses, namely, that for 
large enough values of the local Reynolds numbers, the conditional expectation of 
1Arur1(A,8)2 in the pure ensembles is proportional to rN,  and independent of e,. That 
is, 

where K is a constant. Thus, (~Arur~(Ar~)2~er,Nr; r )  should be independent of r, for all 
values of rNr on which it depends linearly. Figure 4 shows the conditional expectation 
( ~ A r ~ ~ ~ ( A r e ) 2 ~ e r , N r ; ~ )  as functions of both e, and rN,.  It is seen from figure 4(a) that 
(IArurl(Are)21er, N,.;r)  depends linearly on rN,, as expected. Figure 4(b) shows that 
the dependence on 6, is quite weak, also as expected. These results provide additional 
confirmation of RSHP. 

For r in the dissipation region, the conditional p.d.f.s depend on both e, and rN,.  
These data are not shown in detail here. A quick indication of this is provided by 
figures 5(a) and 5(b) for r / q  = 13, which lies in the dissipation range. Not surprisingly, 
equation (6.2) is not verified: in this case we have the postulated proportionality of 
the moment on rN,, but there exists an additional dependence on c,. This dependence 
is well fitted by a power law e?2 (figure 5b). 

The dependence seen in figure 5(b)  is related to the modest value of the local 
Reynolds number corresponding to r / q  = 13. To explain this dependence, note that, 
for small values of r, a Taylor expansion of the left-hand side of equation (6.2) yields 

(lAr~rl(Are)21rr,Nr;r) = KrNr (6.2) 
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FIGURE 3. Conditional p.d.f.s of Ve = ArO(rer)1/6/(rN,)''2 given e, and N,, for r / q  = 78. Each part 
corresponds to the indicated windows of N , / ( N ) ;  for the curves in each part, the windows of ei/(e) 
are: (0.4,0.6), (0.6,0.8), (0.8,1.0), (1.0,1.4), (1.4,1.8), (1.8,2.4), (2.4,3.2). The minimum number of 
points utilized to construct the p.d.f.s corresponded (for all windows of N,/(N)) to the last window 
of e , / (e )  and was approximately 14000 in (a), 9000 in (b), 7000 in (c), and 9000 in (d) .  The large 
scatter in the p.d.f.s, in spite of the large data base used here, is due to the relatively small number 
of samples resulting from the conditioning that needs to be done on both e, and N,. The conditional 
p.d.f.s look the same for several other values of r in the inertial range, and so one can improve 
their convergence by averaging over these values of r / q  in the inertial range, but this has not been 
attempted. 

where 

For a pure ensemble, ( ( d ~ ~ / d x 1 ) ~  l ~ , , N ~ ; r )  = cr/15v (see Stolovitzky 1994), and 
( (aB/dx1)2 le, ,N,;r) = N, /3x .  Therefore, for small r, we obtain the result that 

Figure 5, in combination with equation (6.5), suggests that S for small r is independent 
of E ,  and N ,  or depends on them only weakly. 
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FIGURE 4. The conditional expectation in the inertial range of the product of the absolute value 
of the velocity difference times the square of the temperature difference, given E, and N,. The 
conditioning values of E,/(E) and N , / ( N )  were (0.2,0.4), (0.4,0.7), (0.7,1.0), (1.0,1.4), (1.4,1.7), 
(1.7,2.0), (2.0,2.7). The temperature and velocity increments were taken across the separation 
distance r / q  = 78. In (a), the data lie parallel to the straight solid line of slope 1, as expected by 
RSHP. In (b), the data show no dependence on err also in accordance with RSHP. 
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FIGURE 5. The temperature and velocity increments were taken across the separation distance 
r / q  = 13. In (a), the data are approximately parallel to the solid line of slope 1, and there is a 
systematic dependence on E,, as expected by RSHP. This dependence is studied in (b), which shows 
that the data lie parallel to the straight line of slope 1/2, for which an explanation is provided in 
the text. See (6.5). 

7. Summary and conclusions 
In this paper, we have stated for passive scalar fields mixed by high-Reynolds- 

number turbulence the formal equivalent of Kolmogorov's refined similarity hypothe- 
ses for the velocity field. We have shown that the refined similarity hypotheses for 
passive scalars (RSHP) are consistent with two theoretical results obtained from the 
evolution equation for passive scalars. We have also shown that experimental data 
obtained in a moderate-Reynolds-number turbulent wake support RSHP. 

The theoretical result is obtained from the assumption of local isotropy for 
Obukhov's pure ensembles. This is a more restrictive assumption than that of con- 
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ventional local isotropy for the global domain; the result obtained, namely equation 
(4.4) (which in the appropriate limits yields equations (4.5) and (4.6)), is also stronger 
than the corresponding ones due to Yaglom for global averages. From the present 
theoretical results, we have shown that the conditional expectation (VV;(er, N , ;  r )  is 
independent of E ,  and N,, as demanded by RSHP. 

Experimentally, we have obtained the p.d.f.s of Vi conditioned on 4 and NL, and 
shown that they are essentially independent of r,  E L  and NL in the inertial range. Also 
verified is the linear dependence of the conditional expectation (/A,U,~(A,~I)~~<, N:;  r )  
on rN: and its independence of E:, consistent with RSHP. For smaller r, the latter 
result is not obeyed by the data (as expected from RSHP); we have examined this 
dependence and offered a simple explanation on the basis of Taylor series expansions 
valid for small enough r .  While it is true that experiments at higher Reynolds numbers 
would have been desirable, it is our belief that RSHP can be considered to have been 
verified approximately in these experiments. 

Finally, it is curious to note that the passive scalar fields, which exhibit various 
deviations from local isotropy at moderate Reynolds numbers, obey RSHP reasonably 
well. This would suggest that RSHP are not sensitive tests of universality. It is 
conceivable that departures from universality are hidden by the process of taking 
conditional expectations. This was our conclusion from another study (Stolovitzky & 
Sreenivasan 1994) where we showed that stochastic processes other than turbulence 
show most features of the refined similarity hypotheses for the velocity. 

We are grateful to Robert Kraichnan for useful comments on the theory relating 
to pure ensembles, to the referees for a careful reading of the manuscript, and to the 
Air Force Office of Scientific Research for financial support. 
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